If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-25x^2+158x-36=0
a = -25; b = 158; c = -36;
Δ = b2-4ac
Δ = 1582-4·(-25)·(-36)
Δ = 21364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{21364}=\sqrt{196*109}=\sqrt{196}*\sqrt{109}=14\sqrt{109}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(158)-14\sqrt{109}}{2*-25}=\frac{-158-14\sqrt{109}}{-50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(158)+14\sqrt{109}}{2*-25}=\frac{-158+14\sqrt{109}}{-50} $
| 4x+20+2(x-7)=04 | | -28+5x=7 | | 3=j+1/3 | | 3x-7x+1=31 | | 3k^2–29k–10=0 | | 5x+3(x−1)=10x−2x− | | 4n(8n-8)=0 | | 10w=3w-7 | | 22=-2-2n | | 6(5x+6)=216 | | 9/x+1=9 | | s-5/2=2 | | {x}{9}+1=9 | | 30+3x=360 | | 15x+3=2x+29 | | 8+7r=43 | | 42=3g-6(g-8) | | 3w+4w+2+4= | | 2=s-4/2 | | 5m+4(m+6)=33 | | 4=3(x-1) | | 3x+2(x+4)=23 | | x-2x=4.5 | | 6=v-47/8 | | p+17/8=8 | | 20+8f=92 | | p-6.5=19.75 | | h/8+25=29 | | 8x+80=90 | | p^2+2p-13=−5 | | 3x+3x=10+8x | | 2x+32-3x+93=180 |